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Abstract. Effective magnetic properties of a composite meta-material consisting of periodically arranged
circular conductive elements are studied theoretically. A general expression for the effective bulk permeabil-
ity is obtained with mutual effects and lattice ordering being taken into account. The resonance frequency
of the permeability is found to be strongly dependent on the size and shape of the unit cell. Frequency
dispersion of the permeability is studied with special attention paid to the frequency range, where negative
values of the permeability are possible. Corresponding recommendations for optimisation of the meta-
materials with negative permeability are made. The results are confirmed by numerical simulations of the
finite structure behaviour in an external magnetic field.

PACS. 41.20.Jb Electromagnetic wave propagation; radiowave propagation – 78.20.Bh Theory, models,
and numerical simulation

1 Introduction

A novel class of artificial materials consisting of periodic
arrays of small conductive elements appears to attract in-
creasing attention of many physicists due to possible un-
usual electromagnetic features in the microwave frequency
range [1]. For example, the possibility of obtaining neg-
ative permeability values makes such materials applica-
ble for experiments dealing with negative refraction. The
negative refraction phenomenon, i.e., wave propagation
in media with simultaneously negative permeability and
permittivity [2,3], is practically unavailable in optics, as
the permeability of all known media is close to unity at
optical frequencies. Meta-materials provide, therefore, an
exceptional opportunity for the practical manifestation of
the negative refraction idea [4].

If the wavelength of the electromagnetic wave inside
the medium is much larger than both the element size and
the distances between neighbouring elements, the electro-
magnetic properties of such a material are well described
by effective permeability and permittivity. In general, the
possibility to construct the medium from structural units
possessing predetermined controllable properties provides
a rare chance to study how effective macroscopic param-
eters of the substance are built up. This makes the whole
field very interesting also from a general physical point of
view, as one can apply here the well developed apparatus
of the electrodynamics of condensed matter [5,6], hoping
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to obtain results which are quantitatively even more ac-
curate than in the case of the optical theory where the
structural units, i.e., atoms and molecules, are normally
too complicated for a simple analytical treatment.

To obtain the effective response of the macroscopic
meta-material from the known properties of the structural
units and the periodical lattice parameters we develop a
theory which has much in common with the theory of ef-
fective macroscopic dielectric response in crystals [7–9].
The general features of the latter can be summarized as:
– On the microscopic level mutual effects of the struc-

tural units are taken into account.
– The resulting microscopic non-locality is described by

a characteristic length of response formation (local
field formation length in local field theory). As a rule,
it is of the order of several lattice constants.

– The final effective response in the bulk area of the ma-
terial can be considered as local if the wavelength of
the electromagnetic wave is larger than the response
formation length.

– Near material borders, a subsurface transition region
appears with properties different from those in the
volume. The characteristic thickness of the subsurface
area is of the order of the response formation length.
A prominent example of the simplest structural unit

is a circular conductive element (loop), possessing self-
inductance, implemented capacitance and ohmic resistive
losses. Corresponding meta-materials are already available
for experimental research [4,10]. Nevertheless, the theo-
retical description of the effective magnetic properties of
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such substances leaves much to be desired, as mutual ef-
fects were not properly taken into account. In particular,
the resonance frequency of the material permeability was
concluded to be equal to that of a single structural unit.
As known from optical response theory, the excitations in
crystals are of collective nature and mutual interactions
between atoms affect strongly the position of the reso-
nance [11]. As we shall show, the same happens also in
the case of meta-material – the resonance frequency ob-
tained below depends markedly on the lattice parameters.
At frequencies above the material resonance, the perme-
ability is negative. Performed analysis of the frequency
dispersion of the permeability allows optimisation of the
arrangement of the structural elements so that one can
choose the most favourable lattice type and lattice con-
stants to achieve, for example, a broader frequency range
of the negative permeability.

Numerical simulation of the electromagnetic response
of a finite sample of the meta-material under the action of
an external magnetic field proved completely the assump-
tions and results of the macroscopic approach. This fact
does not only ensure the general principles but also allows
us to expect that one can successfully use the numerical
technique in cases when the structural units are not ap-
propriate for analytical treatment. The most fruitful and,
perhaps, the only possible way would be to solve numer-
ically the field problem in a structure containing about
thousand elements. Numerical averaging yields then the
adequate macroscopic characteristics in a wide frequency
range.

2 Averaging procedure and effective
permeability

We suppose the circular loops to be arranged so that the
loop planes are parallel and the centres of the loops form a
kind of regular lattice. One should certainly keep in mind
that the microscopic dimensions of the artificial substance
are several orders of magnitude larger than those in crys-
tals. The condition that the electromagnetic wavelength
should be much larger than microscopic structural de-
tails is automatically fulfilled in crystals for the optical
range. In the case of meta-materials, the analogous condi-
tion shifts the appropriate frequency range to microwaves
with wavelengths of the order of several centimetres. An-
other difference, which is actually not so critical for the
approach itself but appears during the interpretation of
the results, is that we focus on how the loops affect mag-
netic field, while most effects in crystal optics are con-
cerned with electric field. Due to the electric field – mag-
netic field symmetry of Maxwell’s equations it is rather
easy to find corresponding analogies between crystals and
meta-materials. Nevertheless, the physical background is
quite different.

As in the local response theory [5,7], we postulate that
the response is formed at distances much smaller than the
wavelength, i.e., we can neglect retardation while consid-
ering loop interactions. This quasi-static limit allows us

to separate magnetic effects from electric ones so that
only the magnetic field affects the magnetization of the
medium, defining the permeability. Electric fields are cou-
pled by the polarization, define the permittivity and do
not interfere with the magnetic properties at this stage.
The resulting magnetic permeability is also not affected
by the wavelength so that the latter can be treated as
infinite. Then one can neglect the inhomogeneity of the
magnetization and of the averaged fields and the problem
reduces to the behaviour of loop arrays in the external
homogeneous oscillating magnetic field.

Let all the loops lie in parallel planes normal to the z-
axis. The structure is supposed to be infinite and the cen-
tres of the loops are located at the points rn. These points
are assumed to form a regular spatial lattice so that each
loop has the same surrounding. We suppose the material
of the structure elements to be non-magnetic so that the
magnetization is only due to the currents induced in the
loops. Though in general one should consider the full ten-
sor of the permeability, from the chosen geometry it is ob-
vious that the magnetization has only z-component, i.e.,
only µzz differs from unity. Therefore, only z-component
of the magnetic field is important, and the problem be-
comes scalar.

Supposing the time dependence of fields and currents
to have the oscillating form e−iωt, one can write the elec-
tro-motive force En in the nth loop, induced by the exter-
nal field H0, as

En = iωµ0πr
2
0H0z, (1)

where r0 is the radius of the loop. Using the multi-impe-
dance matrix allows to write

En = ZIn +
∑
n′ 6=n

Znn′In′ , (2)

where In is the current induced in the nth loop, Z is the
self-inductance and Znn′ is the mutual inductance between
the loops n and n′.

The magnetic properties of each loop are defined by
the same self-impedance Z so that we can write

Z = −iωL+
i
ωC

+R. (3)

Here we can treat the self-inductance L, the capaci-
tance C, and the resistance R as predefined. Below we
estimate them for a practically interesting case.

Obviously, due to the homogeneity of the external field
and infinity of the medium, all the loops are in the same
situation. Thus, all the currents In = I are equal. The
magnetic moment of each loop equals to πr2

0I.
The averaged media magnetization defined as the mag-

netic moment density is given by

Mz = n0πr
2
0I, (4)

where the volume concentration of loops n0 is introduced.
Combining equations (1, 2, 4) together allows to obtainZ +

∑
n′ 6=n

Znn′

Mz = iωπ2r4
0n0µ0H0z. (5)
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The total microscopic magnetic field at the point r is
given by the sum of the external field and the contribution
of the loops:

Hmicz(r) = H0z +
∑
n

Hl(r− rn), (6)

where the function Hl(r′) is defined as the value of the
z-component of the magnetic field induced by the loop,
located at the coordinate origin, at the point r′. According
to the Biot-Savart’s law Hl(r′) can be presented as an
integral along the loop contour

Hl(r′) =
I

4π

∫
[d l× (r′ − s)]z
|r′ − s|3

, (7)

where the vector s is the radius vector of that point of the
loop, where d l is taken.

Since all the unit cells are identical, the field distribu-
tion is the same in all the cells. Therefore, the macroscopic
averaging can be performed over the volume Vm = n−1

0 of
one unit cell with any number m. The averaged value of
the microscopic magnetic field (6) yields the macroscopic
induction

Bz = µ0〈Hmicz〉 = µ0H0z +
µ0

Vm

∑
n

∫
Vm

drHl(r− rn).

(8)

The radius vector (r − rn) passes all the cells with cen-
tres at (rm − rn), where m takes all possible values. The
summation over all n in (8) provides the result which is
independent of the particular number m so that we can
write

Bz = µ0H0z + n0µ0

∑
n′

∫
Vn′

drHl(r)

= µ0H0z + n0µ0

∫
V

drHl(r). (9)

The integration in the last term is to be performed over
the large macroscopic volume V of the whole medium. We
take the latter as the limit of a large sphere S centered
in at the coordinate origin with the radius rs going to
infinity.

Using the relation

lim
rs→∞

∫
dr

r′ − s

|r′ − s|3
= −4π

3
s, (10)

it is easy to obtain∫
drHl(r) =

2
3
πr2

0I =
2
3
Mz

n0
, (11)

which enables us to conclude that generally

Bz = µ0

(
H0z +

2
3
Mz

)
. (12)

The definitions Bz = µ0µzzHz and Bz = µ0(Hz + Mz)
allow us to express the effective permeability µzz as

µzz =
Bz

Bz − µ0Mz
· (13)

Using equations (5) and (12) allows to rewrite it as

µzz =

Z +
∑
n′ 6=n

Znn′ +
2
3

iωπ2r4
0n0µ0

Z +
∑
n′ 6=n

Znn′ −
1
3

iωπ2r4
0n0µ0

· (14)

The mutual inductance of the loops in the limit of
infinitely thin wire is given by the double integral along
the loops:

Znn′ = iω
µ0

4π

∫∫
(d ln · d ln′)
|sn − sn′ |

· (15)

For two circular loops with the centres at points rn and rn′
this gives

Znn′ = iωµ0r0J(rn − rn′) (16)

where we use the dimensionless function

J(r) =
2π∫
0

2π∫
0

r0 cos(ϕ1−ϕ2)dϕ1dϕ2

4π
√
ρ2+z2+2r2

0(1−cos(ϕ1−ϕ2))+2ρr0(cosϕ2−cosϕ1)
,

(17)

where ρ and z are the components of the vector r in cylin-
dric coordinates. Now we can rewrite the expression for
the effective µzz as

µzz =

iZ
ωµ0r0

+Σ − 2
3
π2r3

0n0

iZ
ωµ0r0

+Σ +
1
3
π2r3

0n0

, (18)

where the dimensionless parameter Σ =
∑
n′ 6=n

J(rn − rn′)

depends only on the lattice type and the values of the
lattice constants.

One can see that the relation (18) is affected by the
lattice order via the sum Σ only. This summation is per-
formed over all the loops, i.e., over the macroscopic vol-
ume. This volume should be the same as for the averaging
procedure, and we use the same spherical limit. Actually,
it is necessary to perform the summation only over a fi-
nite and relatively small number of loops, which are lo-
cated in the volume near the nth one. Further increase
in the radius rs does not influence the summation result.
For a good numerical accuracy of a few percent it is suf-
ficient to set rs to be only six times larger than the lat-
tice constant. This satisfactory value of the distance rs
can be considered as a characteristic length of the local
response Lresp. Although for different lattice types and
various lattice constants Lresp differs in magnitude, it is,
as a rule, of the order of several inter-loop distances. The
length Lresp is the parameter the wavelengths and sample
dimensions should be compared with to make the macro-
scopic effective response approach valid.
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3 Frequency dispersion of the permeability

The frequency dependence of the effective permeability
given by (18) is controlled by the loop self-impedance. The
general expression (3) is applicable for various conductive
elements, provided that the current cross-section is much
smaller than the element size. For more complicated struc-
tural units like split ring resonators [4] the self-impedance
ceases precise analytical treatment, but can be easily de-
termined experimentally by studying the response of a
single element. For the illustrative analysis below we con-
sider a thin loop made of wire with the radius l (l � r0).
The self-inductance of such a loop equals [5]

L = µ0r0

(
ln

8r0
l
− 2
)

+
µ0r0

4
· (19)

For a given inductance, we choose the value of the im-
plemented capacitance C which is necessary for providing
appropriate resonance frequency of a single loop. To be
consistent with the available experimental information [4],
we set the latter equal to 3 GHz. The corresponding value
of the cyclic resonance frequency of a single loop,

ω0 =
√
LC, (20)

equals 6π×109 rad/s. Appropriate capacitance value could
be obtained, for instance, by a small slit in the loop con-
tour, so that

C = ε0πl
2d−1,

where the slit width d should be of the order of microns
for the loop radius r0 = 2 mm and wire radius l = 0.1 mm.
Actually, one can make capacitance plates larger than the
wire cross section which will allow to increase the slit
width.

To account for resistive losses in the wire one should
consider skin effect, as the frequencies are rather high. The
skin depth in a material with the characteristic conduc-
tivity of copper (σ = 0.65× 108 S/m),

δ =

√
1
2
σωµ0, (21)

appears to be several orders of magnitude smaller than the
wire radius. Thus only thin subsurface layer of the wire is
really active, and the resistance equals

R = r0(σlδ)−1. (22)

The corresponding quality factor of the loop is then of
the order of thousand, which is in good agreement with
the experimental data [4]. We use the physical parameters
mentioned above for the illustrative calculations described
below.

For the analysis of frequency dispersion, it is conve-
nient to present the effective permeability (18) in the gen-
eral resonance form:

µzz(ω) = 1− Aω2

ω2 − ω2
r + iΓω

, (23)

a) b)

c) d)

Fig. 1. Four types of lattices studied. Tetragonal (a), hexago-
nal (b), shifted tetragonal (c) and shifted hexagonal (d) lattices
are shown as seen from the top of the multi-layered structure.
In (c) and (d) cases two neighbouring layers are shown in dif-
ferent hue (black and grey circles, respectively).

where the resonance frequency of the medium is

ωr = ω0

(
1 + µ0r0ΣL

−1 +
π2

3
µ0r

4
0n0L

−1

)1/2

, (24)

the resonance amplitude is

A = π2µ0r
4
0n0L

−1ω
2
r

ω2
0

, (25)

and damping is provided by

Γ = RL−1ω
2
r

ω2
0

· (26)

Relation (24) demonstrates that the resonance of the
medium can be sufficiently shifted from the single loop
resonance due to the mutual interaction. This shift in-
creases as the volume concentration of loops is increased.
The exact values appear to depend, via the sum Σ, on the
type of the regular spatial ordering. The reported lattices
are of the layered type [4,10]. It appears to be technically
simpler to pack first the loops in some regular order on
flat surfaces and afterwards place these planes in a regu-
lar pattern to form the sample. With this technique, the
simplest case seems to be the tetragonal lattice, where
the loops form a square structure in the planes and all the
planes are put just one above another so that columns of
loops are formed. A view from the top of the medium is
shown in Figure 1a. Packing within a plane can have an-
other symmetry: the hexagonal one is shown in Figure 1b.
It is also possible to shift the loops in neighbouring lay-
ers with respect to each other. We can call this a “shifted
lattice”. Extreme shifting is achieved when the centre of
a loop is located equidistantly from the loop centres in
the nearest layer. Such shifted tetragonal and hexagonal
lattices are shown in Figures 1c and d, respectively (two
neighbouring layers are shown).
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Fig. 2. Relative resonance frequency shift as a function of the
ratio of the interlayer distance to the loop radius.

Obviously, to enhance the mutual effects one should in-
crease the volume concentration of loops. The distance a
between the loop centres within a plane is limited by two
loop radiuses; below we accept a = 2.1 r0. The interlayer
distance b could be technically limited, we assume the
value b = 0.1 r0 to be achievable.

The calculated resonance frequency dependencies on
the lattice constant b for different lattices are shown in
Figure 2. They depend only slightly on the lattice type,
and we show the two most deviating curves, for tetragonal
and shifted hexagonal arrangements. It is clear that one
can drastically decrease the resonance frequency increas-
ing packing density of the conductive elements.

At frequencies larger than ωr the real part of the per-
meability (23) is negative. It grows with further increase
in frequency and becomes positive at a frequency ω̃, which
can be found from the condition µzz(ω̃) = 0. To use the
meta-material for the demonstration of the negative re-
fraction phenomenon, it is preferable to have a broader
frequency range of negative permeability. It is convenient
to measure this broadness by the ratio

∆ =
ω̃2 − ω2

r

ω2
r

, (27)

which is, according to equation (23),

∆ =
π2µ0r

4
0n0L

−1

1 + µ0r0ΣL
−1 − 2

3
π2µ0r

4
0n0L

−1
· (28)

The calculated dependency of this expression on the lat-
tice constant b for different lattices is shown in Figure 3.
The general tendency for all lattices is the significant
broadening of the negative permeability range as the vol-
ume concentration of loops increases. It can be clearly seen
that the hexagonal order within a plane provides consid-
erably wider broadening than the square one. Shifting of
neighbouring layers is very profitable at small values of b.

Fig. 3. Relative broadness ∆ of the negative permeability fre-
quency range as a function of the ratio of the interlayer dis-
tance b to the loop radius r0.

As a result, we can conclude that the shifted hexagonal
order is the most appropriate. It provides an up to three
times broader frequency range compared with the tetra-
gonal lattice used in [4].

To explain the importance of the lattice type for the
value ∆ it is useful to notice that with decrease in b
both the lattice sum Σ and the concentration n0 increase
markedly. In the denominator of equation (28) the corre-
sponding last two terms partially compensate each other.
Therefore, the difference in the lattice sums for differ-
ent lattices at a given density, which is not so crucial for
the resonance position, plays an important role here. The
smaller is Σ, the larger is ∆. The contribution to the sum
coming from different loops may have the opposite signs:
the largest positive terms arise from the loops just one
above another in neighbouring layers, while contribution
from the neighbouring loops within the same layer pro-
vide the largest negative terms. Therefore, ∆ is smallest
in the case of tetragonal lattice – there are only 4 neigh-
bouring loops within the same layer, while the influence of
the inter-layer loops is great. The hexagonal lattice pro-
vides 6 in-layer neighbours and also a higher loop concen-
tration n0. In the shifted lattices positive inter-layer terms
are reduced, especially for the small b, when the strong in-
fluence of adjacent vertical neighbours (one exactly above
another) is eliminated. This makes clear why the shifted
hexagonal lattice gives the broadest negative permeability
region.

4 Numerical simulation of the finite
meta-structure

The circular conductive elements provide a rare oppor-
tunity to obtain the analytical expression for the effec-
tive response of the meta-material. Nevertheless, there is
a number of interesting structural units which could be
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Fig. 4. Numerically calculated normalised magnetization dis-
tribution in the sample consisting of 15 × 15× 15 loops.

treated only numerically. In a numerical simulation of a
meta-structure behaviour one can deal only with a finite
sample and it is worthwhile from the computational point
of view to minimize the number of structural units, yet
keeping in mind that the macroscopic approach must be
still valid. Below we determine numerically the macro-
scopic parameters of the loop meta-structure. This allows
us to illustrate the postulates and principles of the macro-
scopic approach and to check the results obtained above.
On the other hand, this comparison allows to optimise the
numerical method itself, as one can determine the proper
operating range of the method, the minimal sufficient size
of the meta-structure, etc.

We study a rectangular sample of the meta-structure
under the action of a homogeneous external magnetic
field which acts along the z-direction, normal to the
loop planes. The currents induced in different loops are
now different and can be found with the help of the
multi-impedance matrix equation (see Eqs. (1–2) for
comparison): ∑

n′

Znn′In′ = iωµ0πr
2
0H0z . (29)

where the diagonal terms of the impedance matrix are all
the same and equal to the self-impedance (3), while the
non-diagonal ones are given by equations (16–17). Cal-
culating and inverting the Znn′ matrix we can get the
currents in each loop numerically.

To demonstrate a typical current distribution inside
the material we show the magnetization pattern inside the
sample consisting of 15× 15× 15 loops (Fig. 4). Calcula-
tions were made for the tetragonal lattice with a = 2.1 r0
and b = 0.5 r0, i.e., for the structure with remarkable mu-
tual effects, at the frequency 0.6ω0. The position of a loop
is characterized by three numbers (nx, ny, nz) taking val-
ues from 1 to 15. We show the distribution in the plane

Fig. 5. Frequency dispersion of the permeability, obtained nu-
merically (squares for the real and diamonds for the imaginary
part), compared with the analytical formula (solid line, real
part; dashed line, imaginary part). Calculations were made for
the tetragonal lattice with a = 2.1 r0, b = 0.5 r0.

ny = 8. The magnetization was determined for each loop
in accordance with equation (4) with I = In, and nor-
malized to H0. The imaginary part was three orders of
magnitude smaller than the real one and is not shown. It
can be clearly seen that there is a noticeable flat region
in the central area where the magnetization is almost ho-
mogeneous. Close to the borders, subsurface areas with
specific properties are found. The characteristic thickness
of these perturbed layers is about several lattice constants,
confirming the idea of the local response formation within
such a length.

The current distribution allows us to calculate the mi-
croscopic magnetic field according to equation (6). We as-
sume the central unit cell in the sample to be the most rep-
resentative for the bulk; then the averaging procedure (8)
can be carried out by numerical integration over this unit
cell. Using the value of the magnetization (4) in this cell,
we get finally the permeability value according to equa-
tion (13). The effective permeability obtained in this way
appears to be independent of the shape of the sample; the
only necessary condition is that the sample dimensions
should be larger than the response formation length. For
instance, the results of the numerical simulation are the
same for the samples of 11×11×31 and 19×19×11 loops.
Actually, the accuracy of about one percent could be
achieved already by using the sample having 11 loops in
each dimension.

The comparison of the numerically obtained perme-
ability as a function of frequency with the analytical
formula (23) is shown in Figure 5. The current distribu-
tion remains similar to Figure 4 within the whole fre-
quency range except for the two narrow regions ω =
(0.700 ± 0.002)ω0 in the close vicinity of the resonance
and ω = (1.2 ± 0.2)ω0 around the frequency at which
the permeability is zero. Inside these regions a periodical
modulation of the currents appears, with the period of the
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modulation being of the order of a few lattice constants.
We believe that this inhomogeneity results from the ex-
citation of standing exciton waves with extremely large
wave vectors. Such waves are well known in optics [11].
Due to their small wavelength, they arise in theory even if
retardation is neglected, being called Coulomb-type exci-
tons. By analogy, in the magnetic case one should possibly
call such waves Biot-Savart-type excitons.

The short-range inhomogeneity of the current distribu-
tion at frequencies mentioned above makes the response
there non-local. Corresponding numerical values of the
permeability are physically meaningless in these narrow
frequency intervals. We omit them in the resulting curve
in Figure 5. In all the remaining frequency range one can
observe excellent agreement between analytical and nu-
merical results for the real part of the permeability. The
very stiff steep behaviour of the imaginary part near the
resonance leads to the large sensitivity of the result to
the errors of the numerical calculations. Nevertheless, we
can report that the resonance frequency was determined
numerically with an error of less than one percent.

This analysis allows us to consider such numerical cal-
culations to be a very promising way to predict the meta-
material response in the case of more complicated struc-
tural units.

5 Discussion

We demonstrated the capability of the macroscopic ap-
proach to describe successfully the properties of a meta-
material constructed of circular conductive elements. The
method of calculating the effective magnetic response can
easily be generalized for the case of more complicated
structural units and various types of their ordering in
meta-materials. For instance, it allows generalization for
the so-called 3D lattice where the planes of conductive ele-
ments are arranged in three perpendicular directions [10].
For the cases when the unit cell is too complicated for an
analytical consideration, the suggested numerical method
is nevertheless applicable. We have shown that for a very
precise ab initio permeability calculation it is necessary
to be capable of studying numerically a system of about
thousand structural units.

We believe that further application of the ideas well
developed in the optical theory would be extremely helpful

in the new intensively growing field of meta-materials. It
appears that a number of ideas and concepts, which have
been approved in optics, are easily applicable to this case.
For example, one can notice, that the structure of the ex-
pression (18) for the permeability has very much in com-
mon with the permittivity of uniaxial crystals, obtained in
terms of the optical local field theory [9]. Moreover, tak-
ing the limit of low loop concentration and assuming the
lattice to be cubic, one can show Σ to be equal to zero
due to symmetry, which leads to the relation

µzz − 1
µzz + 2

=
1
3
n0
−iωµ0r0

Z
π2r3

0. (30)

This shows a direct analogy to the Clausius-Mossotti re-
lation for the permittivity of an isotropic substance with
point polarizable particles. The product −iωµ0r0Z

−1π2r3
0

plays here the role of the magnetic polarizability of a single
structural unit.
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